This paper presents the development of a dynamic positioning in ice validation platform (DPIVP) which is part of a larger research project aimed at developing dynamic positioning (DP) system technologies for ice-rich environments. One outcome is simulation software to aid research in this area. The DPIVP software was designed to realistically simulate the dynamics of ice-structure interactions for real-time applications and to validate components common to DP in ice simulations. The software consists of many components which the DPIVP ties together as a unified system. All components have well-defined interfaces. Many of them are also distributed, allowing execution on separate computers and/or CPUs which helps ensure real-time operation. These two characteristics also decreases coupling and encourages a more modular design with the benefit of easily substituting alternative component implementations without reprogramming the DPIVP. Alternate implementations are useful for conducting research in specific DP in ice areas without substantially changing the system, such as alternative ice force models, DP control algorithms, vessel models, 3D and 2D visualization, environment models, and data acquisition systems. The integrated system was tested and evaluated using unit testing, integration testing, and system testing. The completed system was also validated using test cases that match physical model tests; the results compared favorably. Although the software has some limitations, for example, validated ice-force models being limited to two vessels, and thus lacks the generality we wish, the end result is a working prototype that satisfies the research requirements and provides an architecture and framework for future development.
Read full abstract