BackgroundIndependent Component Analysis (ICA) is a widespread tool for exploration and denoising of electroencephalography (EEG) or magnetoencephalography (MEG) signals. In its most common formulation, ICA assumes that the signal matrix is a noiseless linear mixture of independent sources that are assumed non-Gaussian. A limitation is that it enforces to estimate as many sources as sensors or to rely on a detrimental PCA step. MethodsWe present the Spectral Matching ICA (SMICA) model. Signals are modelled as a linear mixing of independent sources corrupted by additive noise, where sources and the noise are stationary Gaussian time series. Thanks to the Gaussian assumption, the negative log-likelihood has a simple expression as a sum of ‘divergences’ between the empirical spectral covariance matrices of the signals and those predicted by the model. The model parameters can then be estimated by the expectation-maximization (EM) algorithm. ResultsOn phantom MEG datasets with low amplitude dipole sources (20 nAm), SMICA makes a median dipole localization error of 1.5 mm while competing methods make an error ≥7 mm. Experiments on EEG datasets show that SMICA identifies a source subspace which contains sources that have less pairwise mutual information, and are better explained by the projection of a single dipole on the scalp. With 10 sources, the number of strongly dipolar sources (dipolarity >90%) is more than 80% for SMICA while competing methods do not exceed 65%. Comparison with existing methodsWith the noisy model of SMICA, the number of sources to be recovered is controlled by choosing the size of the mixing matrix to be fitted rather than by a preprocessing step of dimension reduction which is required in traditional noise-free ICA methods. ConclusionsSMICA is a promising alternative to other noiseless ICA models based on non-Gaussian assumptions.
Read full abstract