As an efficient, environmentally friendly, and economical urban public transportation tool, the subway has significant advantages compared to other urban public transportation tools and plays an irreplaceable role in the urban rail transit system. While the subway brings many conveniences to people, its operation has also brought a series of problems to urban development and residents’ lives, especially the vibration and noise problems generated by the subway have become unavoidable and urgent problems to be solved. The traditional wave barriers have a certain effect on attenuating and suppressing the vibration generated by the subway, but it has shortcomings in terms of the width and quantity of elastic wave bandgap (BG), so its application in low-frequency vibration reduction and isolation of subway systems is greatly limited. In order to broaden the elastic BG width and quantity of the wave barrier, this paper designs a novel phononic-like crystal subway wave barrier (PLCSWB) for subway vibration isolation based on locally resonant theory. Firstly, the dispersion curves of the novel PLCSWB are calculated using the improved plane wave expansion method and finite element method (FEM), and compared with the dispersion curves of traditional phononic crystal (PC) wave barriers. Secondly, the frequency response function of the novel PLCSWB is calculated using FEM to evaluate its attenuation effect on vibration, and the energy distribution characteristics at its BG boundary are analyzed. Then, the main factors affecting the BG of the novel PLCSWB are analyzed, and a spring–mass system equivalent model of the novel PLCSWB is established to theoretically estimate its BG range. Finally, the vibration data of the tunnel wall monitored on site are used to analyze and verify the vibration isolation effect of the novel PLCSWB. The results show that the novel PLCSWB opens five low-frequency BGs in the 200[Formula: see text]Hz frequency band, which increased the total width of the opened BGs by 49% compared to traditional PC wave barriers. In the frequency range of the BG, the attenuation value of the novel PLCSWB to vibration is mostly above 30[Formula: see text]dB, and the energy distribution inside the structure is mainly concentrated in the primitive cell that controls the BG, indicating good attenuation and control effects on vibration. The main factors affecting the BG of the novel PLCSWB are the density of the scatterer material, the elastic modulus, and the thickness of the wrapping layer material. Moreover, during subway operation, the novel PLCSWB has a good attenuation effect on the vibration transmitted from the tunnel wall to the soil. Among them, the maximum vibration acceleration amplitude of the novel PLCSWB with nine rows is reduced by 47%, and the vibration isolation performance is remarkable. The relevant research results of this paper provide a novel approach and method for the study of subway vibration reduction and isolation, and can also provide specific references for the design and development of wave barriers.
Read full abstract