Abstract
Epidemiological studies indicate that electromagnetic fields (EMF) are associated with cancer in humans. Exposure to mobile phone specific high frequency fields (HF-EMF) may lead to increased glioma risks, while low frequency radiation (LF-EMF) is associated with childhood leukemia. We studied the impact of HF-EMF (1950 MHz, UMTS signal) on DNA stability in an astrocytoma cell line (1321N1), and the effect of LF-EMF (50 Hz) in human derived lymphoma (Jurkat) cells. To find out if these fields affect chemically induced DNA damage, co-exposure experiments were performed. The cells were exposed to HF-EMF or LF-EMF and treated simultaneously and sequentially with mutagens. The compounds cause DNA damage via different molecular mechanisms, i.e. pyrimidine dimers which are characteristic for UV light (4-nitroquinoline 1-oxide, 4NQO), bulky base adducts (benzo[a]pyrene diolepoxide, BPDE), DNA-DNA and DNA-protein cross links and oxidative damage (NiCl2, CrO3). DNA damage was measured in single cell gel electrophoresis (comet) assays. We found a moderate reduction of basal and 4NQO-induced DNA damage in the astrocytoma line, but no significant alterations of chemically induced DNA migration by the HF and LF fields under all other experimental series. The biological consequences of the moderate reduction remain unclear, but our findings indicate that acute mobile phone and power line specific EMF exposures do not enhance genotoxic effects caused by occupationally relevant chemical exposures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have