Prematurely born infants often experience frequent hypoxic episodes due to immaturity of respiratory control resulting in disturbances of cortical development and long-term cognitive and behavioral abnormalities. We hypothesize that neonatal intermittent hypoxia alters maturation of cortical excitatory and inhibitory circuits that can be detected early with functional MRI. C57BL/6 mouse male and female pups were exposed to an intermittent hypoxia (IH) regimen from P3 to P7, corresponding to pre-term humans. Adult mice after neonatal IH exhibited motor hyperactivity and impaired motor learning in complex wheel tests. Patch clamp and evoked field potential recordings revealed increased glutamatergic synaptic transmission. To investigate the role of GABAergic inhibition on glutamatergic transmission during the developmental, we applied a selective GABAA receptor inhibitor picrotoxin. A decreased synaptic inhibitory drive in the motor cortex was evidenced by miniature IPSC frequency on pyramidal cells, multi-unit activity recording in vivo with picrotoxin injection, and decreased interneuron density. There was also an increased tonic depolarizing effect of picrotoxin after IH on Betz cells' membrane potential on patch clamp and direct current potential in extracellular recordings. The amplitude of low-frequency fluctuation on resting-state fMRI was larger, with a larger increase in regional homogeneity index after picrotoxin injection in the IH group.The increased glutamatergic transmission, decreased numbers, and activity of inhibitory interneurons after neonatal IH may affect the maturation of connectivity in cortical networks, resulting in long-term cognitive and behavioral changes. Functional MRI reveals increased intrinsic connectivity in the sensorimotor cortex, suggesting neuronal dysfunction in cortical maturation after neonatal IH.Significance Statement The study demonstrates that perinatal hypoxic brain injury disrupts the balance between excitatory and inhibitory neurotransmission in developing cortical networks. This disruption, potentially caused by functional deficiencies in GABAergic interneurons alongside increased glutamatergic transmission, may contribute to altered brain connectivity and the observed behavioral deficits, including hyperactivity and cognitive difficulties. This research provides insights into how perinatal brain injury disrupts the balance of neural excitation and inhibition, which can be detected as altered local resting-state fMRI connectivity. These findings contribute to our understanding of possible cellular underpinning of clinical fMRI findings after perinatal brain injury.
Read full abstract