The endmember extraction algorithm, which selects a collection of pure signature spectra for different materials, plays an important role in hyperspectral unmixing. In this paper, the endmember extraction algorithm is described as a combinatorial optimization problem and a novel Mutation Operator Accelerated Quantum-Behaved Particle Swarm Optimization (MOAQPSO) algorithm is proposed. The proposed approach employs Quantum-Behaved Particle Swarm Optimization (QPSO) to find endmembers with good performances. To the best of our knowledge, this is the first time that QPSO has been introduced into hyperspectral endmember extraction. In order to follow the law of particle movement, a high-dimensional particle definition is proposed. In addition, in order to avoid falling into a local optimum, a mutation operation is used to increase the population diversity. The proposed MOAQPSO algorithm was evaluated on both synthetic and real hyperspectral data sets. The experimental results indicated that the proposed method obtained better results than other state-of-the-art algorithms, including Vertex Component Analysis (VCA), N-FINDR, and Discrete Particle Swarm Optimization (D-PSO).
Read full abstract