This paper presents an air gap design approach to improve the linearity of rotational Hybrid Reluctance Actuators (HRAs) used in fast steering mirrors. The approach involves modeling a one-degree-of-freedom HRA with a magnetic equivalent circuit to identify and analyze sources of non-linearities. On the basis of the verified model, solutions for an improved linear system behavior are analytically searched. Two linearized HRA designs are proposed, one with linear cross-section dependency and the other with hyperbolic air gap length dependency. Finite element method simulations are employed to evaluate the performance with respect to the linearity and the motor constant of these designs, showing factor 50 improved system linearity.
Read full abstract