Abstract

We prove central limit theorems for the random walks on either the mapping class group of a closed, connected, orientable, hyperbolic surface, or on $\text{Out}(F_N)$, each time under a finite second moment condition on the measure (either with respect to the Teichm\"uller metric, or with respect to the Lipschitz metric on outer space). In the mapping class group case, this describes the spread of the hyperbolic length of a simple closed curve on the surface after applying a random product of mapping classes. In the case of $\text{Out}(F_N)$, this describes the spread of the length of primitive conjugacy classes in $F_N$ under random products of outer automorphisms. Both results are based on a general criterion for establishing a central limit theorem for the Busemann cocycle on the horoboundary of a metric space, applied to either the Teichm\"uller space of the surface, or to Culler--Vogtmann's outer space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.