Abstract

Given integers$g,n\geqslant 0$satisfying$2-2g-n<0$, let${\mathcal{M}}_{g,n}$be the moduli space of connected, oriented, complete, finite area hyperbolic surfaces of genus$g$with$n$cusps. We study the global behavior of the Mirzakhani function$B:{\mathcal{M}}_{g,n}\rightarrow \mathbf{R}_{{\geqslant}0}$which assigns to$X\in {\mathcal{M}}_{g,n}$the Thurston measure of the set of measured geodesic laminations on$X$of hyperbolic length${\leqslant}1$. We improve bounds of Mirzakhani describing the behavior of this function near the cusp of${\mathcal{M}}_{g,n}$and deduce that$B$is square-integrable with respect to the Weil–Petersson volume form. We relate this knowledge of$B$to statistics of counting problems for simple closed hyperbolic geodesics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.