Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has induced a worldwide pandemic since early 2020. COVID-19 causes pulmonary inflammation, secondary pulmonary fibrosis (PF); however, there are still no effective treatments for PF. The present study aimed to explore the inhibitory effect of dihydroartemisinin (DHA) on pulmonary inflammation and PF, and its molecular mechanism. Morphological changes and collagen deposition were analyzed using hematoxylin-eosin staining, Masson staining, and the hydroxyproline content. DHA attenuated early alveolar inflammation and later PF in a bleomycin-induced rat PF model, and inhibited the expression of interleukin (IL)-1β, IL-6, tumor necrosis factor α (TNFα), and chemokine (C-C Motif) Ligand 3 (CCL3) in model rat serum. Further molecular analysis revealed that both pulmonary inflammation and PF were associated with increased transforming growth factor-β1 (TGF-β1), Janus activated kinase 2 (JAK2), and signal transducer and activator 3(STAT3) expression in the lung tissues of model rats. DHA reduced the inflammatory response and PF in the lungs by suppressing TGF-β1, JAK2, phosphorylated (p)-JAK2, STAT3, and p-STAT3. Thus, DHA exerts therapeutic effects against bleomycin-induced pulmonary inflammation and PF by inhibiting JAK2-STAT3 activation. DHA inhibits alveolar inflammation, and attenuates lung injury and fibrosis, possibly representing a therapeutic candidate to treat PF associated with COVID-19.
Read full abstract