Direct oxidation of 5-hydroxymethylfurfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), crucial for medical supply production, is hindered by overoxidation. We synthesized gold nanomaterials with distinct single-crystal facets, {111} in octahedra (OC), {100} in nanocubes (NCs), and {110} in rhombic dodecahedra (RD), to investigate the facet-dependent HMF oxidation. The Au RD achieved the spontaneous oxidation of HMF to HMFCA with stoichiometric hydrogen production, maintaining 95% carbon balance, 91% yield, and 98% selectivity. In contrast, Au OC and NCs were inert. The superior performance is due to the absence of a C-H activation energy barrier on the Au(110) facet. Furthermore, gas chromatography and isotope experiments supported that the intermediate is oxidized to produce H2 via H- transfer, rather than H2O via H+ transfer. Oxygen was essential for scavenging electrons, thereby closing the reaction loop. The Au RD exhibited remarkable stability, operating for 240 h without performance degradation, indicating its potential for efficient HMFCA production.
Read full abstract