The essence of the inversion concept of the origin of life can be narrowed down to the following theses: (1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; (2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance “free energy contribution entropy contribution” (as well as “information contribution informational entropy contribution”), from negative to positive values. At the inversion moment, the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this concept, the origin-of-life process on the early Earth took place in oscillating hydrothermal medium. The process was taking two successive stages: (1) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids, and simple amino acids, or their precursors, within the temperature interval of 100–300 °C (prebiotic stage); (2) nonspontaneous synthesis of sugars, ATP, and nucleic acids started at the inversion moment under the temperature 70–100 °C (biotic stage). Macro and microfluctuations of thermodynamic and physicochemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems (Kompanichenko, 2012). Conditions in potential hydrothermal medium for the origin of life were explored on the examples of several hydrothermal systems in Kamchatka peninsula. Temperature of water in hot springs ranges from < 60 to 98 °C, in the bore holes water-steam temperature varies from < 100 to 239 °C, and pressure from < 1 to 35 bars at the wellheads; pH is within the interval 2.5–9.0. Pressure monitoring at the depth 950 meters in the borehole No. 30 (Mutnovsky field) has revealed high-amplitude (up to 1–2 bars) irregular macrofluctuations and low-amplitude quite regular microoscillations of pressure (amplitudes 0.1–0.3 bars). Hydrocarbons, lipid precursors, and simple amino acids are available in the fluid. The lifeless condensate of water-steam mixture (temperature 108–175 °C) contains aromatic hydrocarbons, n-alkanes, ketons, alcohols, and aldehydes. In addition to those, cycloalkanes, alkenes, dietoxyalkanes, naphtenes, fatty acids, ethyl ethers of fatty acids, and monoglycerides have been detected in hot solutions inhabited by thermophiles and hyperthermophiles (temperature 70–98 °C). According to Mukhin et al. (1979), glycine of probably abiotic origination was detected in lifeless condensate.
Read full abstract