The fundamental hydrolysis behavior of tetravalent actinide cations (An4+) with a high charge is crucial for understanding their solution chemistry, particularly in nuclear fuel reprocessing and environmental behavior. Using Th4+ as a reference of the An4+ series, this work employed both the periodic model and the cluster model to calculate the first hydrolysis reaction constant (pKa1) of the Th4+ aqua ion and conducted a detailed evaluation of these approaches. In the periodic model, ab initio molecular dynamics (AIMD) simulations of Th4+ in the explicit solvation environment are conducted, using metadynamics and constrained molecular dynamics to calculate pKa1 values. Metadynamics simulations with sufficient sampling yielded a value of 5.02, aligning with the experimental values (4.12-4.97). Moreover, AIMD results reveal further Grotthuss-type proton transfers and changes in the solvent structures, which are important for accurately modeling the hydrolysis process. In the cluster model, density functional theory calculations are performed on isolated hydrate clusters to obtain pKa1 values, describing solvation effects through the cluster-continuum model. Based on insights from the periodic models, particularly regarding further proton transfer, the cluster model was modified and tested using different functionals and similar cations (La3+and Ac3+). The pKa1 values obtained in the cluster model also show good agreement with the experimental values. The current computational approaches provide a comprehensive understanding of Th4+ hydrolysis and a reference framework for studying the hydrolysis of other lanthanide and actinide ions.
Read full abstract