In recent years, SiGe and Ge have drawn considerable attention as a high mobility channel material toward next-generation complementary metal-oxide-semiconductor (CMOS) circuits. In particular, by inducing strain into Ge using Ge/SiGe hetero-structure, highly enhanced mobility which greatly exceed the bulk mobility have been reported [1]. In order to obtain high mobility, it is necessary to generate larger strain. As one of the methods, strained SiGe on Ge-on-Si is expected. In addition, in order to realize a high mobility SiGe channel MOSFET, it is necessary to form the high-quality gate stacks and interfaces between a gate insulator film and a SiGe surface. In fact, the use of atomic layer deposition (ALD) or plasma oxidation has provided a high quality interface between Ge and the insulator film [2, 3]. However, unlike Si, wet cleaning of Ge or hydrofluoric acid treatment does not provide a high-quality hydrogen-terminated surface, and there is concern about surface oxidation and impurity adsorption. Therefore, we have attempted direct ALD on epitaxially grown Ge and reported that the Ge/Al2O3 interface properties are improved [4]. In the case of SiGe, a high-quality hydrogen-terminated surface cannot be obtained by wet cleaning or hydrofluoric acid treatment. For this reason, oxidation or impurity adsorption on the SiGe surface is feared. In this study, for the application to strained SiGe channel MOSFET, an Al2O3 film was formed using ALD on epitaxially grown SiGe as a gate stack structure on SiGe, and the interface structure was evaluated.Two types of samples were prepared by two methods. An n-type Ge (100) substrate was used in this study. The Ge substrate was chemically cleaned with NH4OH solution and followed by a HF dip and de-ionized water rinse. The wet-cleaned Ge substrate was loaded into an MBE chamber and subjected to thermal cleaning at 600 °C for 10 min. Subsequently, a 50 nm thick SiGe layer (called epi-SiGe hereafter) was hetero-epitaxially grown on the Ge substrate at 300 °C. The as-grown sample was subsequently transferred to the vacuum-connected ALD chamber and an Al2O3 film was deposited by ALD (Sample (A)). For comparison, after the epitaxial growth of the SiGe, the sample was once taken out from the chamber and exposed to the atmosphere for 5 min. The sample was then reloaded into the ALD chamber and an Al2O3 film was deposited (sample (B)). ALD of Al2O3 films was carried out for 20 cycles with precursors of TMA and H2O at a substrate temperature of 300 °C. Chemical bonding states were examined by x-ray photoelectron spectroscopy (XPS) using an ESCA-300 manufactured by Scienta Instruments AB.According to figs.1 (a) and (b), it was confirmed that the GeOx peak of the sample (A) transferred in a vacuum was significantly smaller than that of the sample (B) once exposed to the atmosphere. In particular, almost no Ge4+ peak [5] arising from Ge in GeO2 was observed, indicating that oxidation of Ge was suppressed by transport in vacuum. It is considered that the GeOx peak in the sample (A) is derived from the interface between Al2O3 and SiGe. According to figs.1 (c) and (d), no Si4+ component (binding energy range 102eV to 104eV) is found in the Si 2p 3/2 spectrum of the sample (A) transferred in a vacuum. In summary, XPS analyses reveal that formation of GeO2 and SiO2 by natural oxidation can be almost avoided by ALD on the epitaxial SiGe, and it is indicated that the Al2O3/SiGe interface created does not contain the interfacial GeO2 layer which is present for the sample exposed to the air before ALD. These results clearly indicate that the direct ALD on epitaxial SiGe is very promising way to highly improve the SiGe MOSFET performances.AcknowledgmentsThis work was partly supported by the MEXT Supported Program for the Strategic Research Foundation at Private Universities 2015–2019, a Grant-in-Aid for Scientific Research from MEXT and Interdisciplinary Research Center for Nano Science and Technology in Tokyo City University.