AbstractIn order to investigate the primary factors influencing hot‐spot formation in emulsion explosives sensitized by hydrogen‐storage glass microballoons (GMBs), we conducted impact calculations on hydrogen‐storage GMBs. The calculations focused on tracking two main mechanisms: the brittle collapse of GMBs and the adiabatic compression of internal gas. Various parameters were considered, including loading pressures, initial porosities, gas types, and initial gas pressures. Our findings indicate that the contribution of brittle collapse to hot‐spot formation is negligible, while adiabatic compression emerges as the predominant intrinsic mechanism for hot‐spot ignition in GMB‐sensitized emulsion explosives. Moreover, we observed that the ignition time remains similar for low‐pressure nitrogen and high‐pressure hydrogen. The addition of hydrogen does not result in an increased number of hot‐spots; however, it elevates the energy of each individual hot‐spot, thereby enhancing power delivery. Optimal selection of GMB size is crucial for hot‐spot formation and hydrogen storage. GMBs that are excessively large are prone to shell breakage, while overly small GMBs have limited hydrogen storage capacity. GMBs within the size range of 20 μm to 100 μm are deemed more suitable for emulsion explosives.