Hydrogen storage properties of the Ti 1.1CrMn AB 2-type Laves phase alloys, for both low (−30 °C) and high (80 °C) temperature applications, are improved by substituting Zr at Ti site. In agreement with the larger radius of Zr than Ti, the lattice volume of (Ti 1− x Zr x ) 1.1CrMn ( x=0, 0.05, 0.06 and 0.1) alloys, prepared by arc melting, increases with x. The increase in the Zr content leads to a decrease in the equilibrium hydrogen sorption pressure plateau and faster absorption kinetics, associated with an increase in the hydrogen storage capacity from 1.9 to 2.2 wt% for Ti 1.1CrMn and (Ti 0.9Zr 0.1) 1.1CrMn alloys, respectively. At −5 °C, (Ti 0.9Zr 0.1) 1.1CrMn alloy reversibly absorbs and desorbs 2.2 wt% at 160 bar within 250 s. Based on thermodynamic calculated values, the optimized Zr substituted alloy (Ti 0.9Zr 0.1) 1.1CrMn desorbs hydrogen at 3.2 bar at −30 °C and 135 bar at 80 °C. This is a significant reduction of the sorption pressure plateau as compared with the current technology for mobile applications based on Ti 1.1CrMn alloy with hydrogen desorption plateau above 400 bar at 80 °C. Finally, the mechanism of improved hydrogen storage properties is discussed based on the radius and the hydrogen affinity of the substituting element.