Abstract
The hydrogen absorption properties of LaNi 4.8T 0.2 (T = Mg, Bi and Sb) alloys are reported. The effects of the substitution of Ni in the LaNi 5 compound with Mg, Bi and Sb are investigated. The ability of alloys to absorb hydrogen is characterized by the pressure–composition ( p– c) isotherms. The p– c isotherms allow the determining thermodynamic parameters enthalpy (Δ H des ) and entropy (Δ S des ) of the dehydrogenation processes. The calculated Δ H des and Δ S des data helps to explain the decrease of hydrogen equilibrium pressure in alloys doped with Al, Mg and Bi and its increase in the Sb-doped LaNi 5 compound. Generally, partial substitution of Ni in LaNi 5 compound with Mg, Bi and Sb cause insignificant changes of hydrogen storage capacity compared to the hydrogen content in the initial LaNi 5H 6 hydride phase. However, it is worth to stress that, in the case of LaNi 4.8Bi 0.2, a small increase of H/f.u. up to 6.8 is observed. The obtained results in these investigations indicate that the LaNi 4.8T 0.2 (T = Al, Mg and Bi) alloys can be very attractive materials dedicated for negative electrodes in Ni/MH batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.