Al and its alloys are studied extensively for hydrogen generation through water splitting. Alloying Al with metal activators such as bismuth, indium, gallium, etc., leads to the formation of micro galvanic cells during hydrolysis reaction, resulting in an improved hydrogen generation rate. Activation of Al by adding carbon-based materials such as graphite, carbon nanotubes (CNTs), graphene, etc., can instantaneously generate hydrogen at room temperature. When carbon particles are desorbed from the Al matrix during hydrolysis, new Al is exposed, resulting in an increased reaction rate. In Al-Graphite composites which form core-shell structures, H2O molecules penetrate through the graphite layers and break down the core-shell structure during hydrolysis, and the new Al surfaces are exposed to water. It was found that Al with nano bismuth and graphene nanosheets showed better hydrogen generation rate and hydrogen yield. Graphene nanosheets control the agglomeration of Al and enhance the specific surface area for hydrolysis. During the hydrolysis of Al-CNTs composites, CNTs act as a cathode, resulting in galvanic corrosion between CNTs and the Al matrix. CNTs can also effectively control the agglomeration of Al during ball milling. Spark plasma sintered Al–Bi-CNT composites showed an enhanced hydrogen generation rate during hydrolysis. This paper presents an overview of hydrogen generation by hydrolysis of Al and its alloys, emphasising the addition of carbon-based materials such as graphite, graphene, CNTs, etc.
Read full abstract