Abstract

The activation capacity of molecular oxygen is an important indicator to evaluate the photocatalytic efficiency of photocatalysts. In this paper, WS2 nanosheet was deposited on hyper-crosslinked CTF-1-G (obtained by molecular expansion from covalent triazine framework CTF-1) to form a C-GW heterojunction, which promoted the photodegradation of pollutants and the activation of molecular oxygen. This novel C-GW heterojunction exhibited excellent degradation property for organic pollutants (tetracycline (TC), rhodamine B (RhB)) and activating molecular oxygen under visible light irradiation. Among them, C-GW15 could degrade 98% of 20 ppm TC in 60 min and 99% of 30 ppm RhB in 30 min, and it had the highest hydrogen generation rate and hydrogen production amount in 4 hours, which were 8.74 mmol h-1 g-1 and 34.94 mmol g-1, respectively. Meanwhile, C-GW15 had the strongest 3,3',5,5'-tetramethylbenzidine oxidation capacity and could generate 1.83 μmol of ˙O2- in 60 min and the production of H2O2 was 20.8 μmol L-1 in 40 min. The results of this study clearly indicated that the combination of WS2 and CTF-1-G can enhance the visible light absorption capacity and photogenerated carrier separation efficiency, thus promoting the photocatalytic performance. Finally, a Z-type photocatalytic mechanism was proposed based on radical capture, molecular oxygen activation experiments and electron spin resonance analysis. These findings will extend the fundamental understanding of the Z-type photocatalytic mechanism and provide new opportunities for the rational design of CTF heterojunctions for the treatment of environmental pollution and clean energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call