Multiple cluster hydraulic fracturing is widely used in the development of shale reservoir. The morphology of multiple fractures propagating from multiple cluster is complex due to the stress shadow effect. The design and operation of multiple cluster hydraulic fracturing in horizontal wells require adequate knowledge of the effect of different factors, including rock properties, in-situ stresses and fluid properties on the fracture morphology. In this paper, lattice simulation, a new particle based computational method was used to investigate the multiple cluster hydraulic fracturing in shale. The results showed that stress anisotropy and cluster spacing play an important role on geometry of the propagating fracture. The middle hydraulic fracture is restricted to propagate when cluster spacing is decreased. Simultaneous, two-step and sequential fracturing scenarios in a single horizontal well were simulated. The simultaneous and sequential fracturing showed to mainly affect the fracture propagation morphology with little effect on fracture length, while the middle fracture is shorter than its two side fractures in two-step fracturing. In two horizontal models, the simultaneous and sequential fractures showed similar morphology during multiple cluster hydraulic fracturing. In term of stimulated reservoir volume (SRV), zipper fracturing showed the largest SRV during multiple cluster hydraulic fracturing in two horizontal wells.
Read full abstract