Recent advancements in molecular biology, biotechnology, chemistry/radiochemistry, artificial intelligence, and imaging techniques have significantly propelled the field of cardiovascular molecular imaging. This review aims to provide a comprehensive overview of the current state of cardiovascular positron emission tomography (PET) imaging and cardiac computed tomography (CT), exploring their roles in elucidating molecular and cellular processes, enabling early disease detection, and guiding novel therapeutic interventions for cardiovascular conditions. Cardiovascular PET imaging strives to uncover molecular and cellular events preceding visible anatomical manifestations or physiological changes. Meanwhile, cardiac CT has evolved into a multifaceted modality, offering insights into both anatomy and function. Utilizing advanced CT technologies allows for a thorough evaluation, encompassing fractional flow reserve, perfusion imaging, pericoronary adipose tissue attenuation, atherosclerotic plaque characterization, cardiomyopathies, structural cardiac abnormalities, and congenital heart anomalies. The emergence of hybrid imaging, combining PET and CT, presents innovative prospects in cardiology. This approach enables the simultaneous assessment of cardiac perfusion and coronary anatomy in a singular scan, providing complementary insights relevant to potential coronary artery disease. Despite the substantial potential impact, operational familiarity with this hybrid tool remains limited, and its integration into routine clinical practice warrants further exploration. In summary, the review underscores the transformative impact of recent technological advancements on cardiovascular molecular imaging. The integration of PET and CT, along with their individual capabilities, holds promise for early disease detection and informed clinical decision-making. While acknowledging the potential of hybrid imaging, it emphasizes the need for increased operational familiarity and continued exploration to facilitate its seamless integration into routine clinical practice. The insights gained from this review contribute to the ongoing dialogue in the field, offering a foundation for future research and advancements in cardiovascular imaging.