Knowledge Graph (KG) stores human knowledge facts in an intuitive graphical structure but faces challenges such as incomplete construction or inability to handle new knowledge. Knowledge Graph Reasoning (KGR) can make KGs more accurate, complete, and trustworthy to support various artificial intelligence applications better. Currently, the popular KGR methods are based on graph neural networks (GNNs). Recent studies have shown that hybrid logic rules and synergized pre-trained language models (PLMs) can enhance the GNN-based KGR methods. These methods mainly focus on data sparsity, insufficient knowledge evolution patterns, multi-modal fusion, and few-shot reasoning. Although many studies have been conducted, there are still few review papers that comprehensively summarize and explore KGR methods related to GNNs, logic rules, and PLMs. Therefore, this paper provides a comprehensive review of GNNs and PLMs for KGR based on a large number of high-quality papers. To present a clear overview of KGR, we propose a general framework. Specifically, we first introduce the KG preparation. Then we provide an overview of KGR methods, in which we categorize KGR methods into GNNs-based, logic rules-enhanced, and pre-trained language models-enhanced KGR methods. Furthermore, we also compare and analyze the GNN-based KGR methods in two scenarios. Moreover, we also present the application of KGR in different fields. Finally, we discuss the current challenges and future research directions for KGR.
Read full abstract