Abstract

Abstract Two new propositional non-classical logics, referred to as symmetric intuitionistic logic (SIL) and conflated intuitionistic logic (CIL), are introduced as indexed and non-indexed Gentzen-style sequent calculi. SIL is regarded as a natural hybrid logic combining intuitionistic and dual-intuitionistic logics, whereas CIL is regarded as a variant of intuitionistic paraconsistent logic with conflation and without paraconsistent negation. The cut-elimination theorems for SIL and CIL are proved. CIL is shown to be conservative over SIL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.