We genetically characterize an unusual hybrid incompatibility phenotype manifest in F(1) offspring of crosses between two populations of Tribolium castaneum. Hybrid larvae cease development at the third larval instar, persisting as 'perpetually immature larvae' thereafter. Although unable to produce viable adult hybrid offspring with one another, each population produces abundant, fertile hybrids with other populations, indicating a recent origin of the incompatibility and facilitating genetic studies. We mapped the paternal component of the hybrid phenotype to a single region, which exhibits two characteristics common to hybrid incompatibility: marker transmission ratio distortion within crosses and elevated genetic divergence between populations. The incompatible variation and an elevation in between-population genetic divergence is associated with a region containing the T.castaneum ecdysone receptor homologue, a major regulatory switch, controlling larval moults, pupation and metamorphosis. This contributes to understanding the genetics of speciation in the Coleoptera, one of the most speciose of all arthropod taxa.