Design principles of silicon multiplexers for linear and matrix infrared (IR) focal plane arrays (FPAs) are considered. Silicon multiplexers intended for operation with multielement mercury-cadmium-tellurium (MCT) photodiode detectors, with multielement photoresistor detectors based on multilayer structures with quantum wells, and with other types of photodetectors sensitive to radiation in the IR ranges from 3 to 5 and from 8 to 16 µm, are discussed. The type and size range of the multiplexers includes 19 models that differ in frame sizes, input circuits, charge capacity, and cell pitch. Around the designed multiplexers, hybrid and monolithic FPAs of various formats for medium and far IR ranges with a rather high temperature resolution (< 0.02 K) have been developed.