Polyaniline-based hybrid material (PANI-MnPBA/NiCoMnS) was prepared by hydrothermal-solvothermal approach. Synthesized hybrid material was characterized through FTIR-spectroscopy, p-XRD, SEM, EDX, BET, and Zetasizer techniques. Hybrid material as adsorbent for removal of Congo red (CR) from water system showed excellent results such as 98 % removal efficiency and 254 mg/g adsorption capacity. Furthermore, various studies like adsorption isothermal, kinetic, thermodynamic, and statistical analysis were performed to understand the adsorption phenomenon. From various kinetic models, pseudo-first and second-order kinetic models, intra-particle and liquid film diffusion kinetic models, pseudo-first-order kinetic model, and liquid-film diffusion kinetic model both are most suitable for explaining the adsorption phenomenon due to the greater value of R2 (0.955) for CR. According to these kinetic models, physio-sorption and diffusion play a basic role in the adsorption of CR. Moreover, ΔG (-1779.508 kJ mol−1) and ΔH (61,760.889 kJ mol−1) values explained the spontaneous and exothermic nature of the adsorption process, respectively. Furthermore, for support of the adsorption mechanism via electrostatic attractions before and after the adsorption process FTIR results of as-synthesized adsorbent were measured (NH peaks before 3668.88, after 3541.41 cm−1). These results confirm electrostatic attraction for the adsorption process. Finally, the statistical model was added (n < 1), according to this model, adsorption follows a multi-anchorage approach and adsorbent contains enough sites for adsorption of CR.