Understanding interspecific introgressive hybridisation and the biological significance of introgressed variation remains an important goal in population genomics. European (Anguilla anguilla) and American eel (A. rostrata) represent a remarkable case of hybridisation. Both are panmictic and spawn in partial sympatry in the Sargasso Sea, occasionally producing viable, fertile hybrids, primarily found in Iceland. We studied introgressive hybridisation from American into European eel using whole-genome sequences of 78 individuals, including European, American and 21 putative hybrid eels. Previous studies using few genetic markers could not resolve whether hybridisation involved simple unidirectional backcrossing or a more complex hybrid swarm scenario. However, local ancestry inference along individual chromosomes revealed that Icelandic hybrids were primarily F1 or first-generation backcrosses towards European eel, with some showing more complex backcrossing. All European eels outside Iceland contained short chromosomal blocks from American eel, indicating a porous genome. We found no evidence for previously hypothesised geographical gradients of introgression in European eel outside Iceland. Several chromosomal regions showed high interspecific divergence, but haplotype blocks introgressed from American eel were identified both within and outside these regions. There was little correspondence between regions of high relative (FST) and absolute divergence (dXY), with the former reflecting selective sweeps within species or reduced recombination rather than barrier loci. A single genomic region showed evidence of repeated introgression from American into European eel under positive selection in both species. The study illustrates that species can maintain genetic integrity despite porous genomes and that standing variation in one species can potentially be available for future adaptive responses in the other species.
Read full abstract