A bionic leg with ergonomic functionality can increase the user’s independence. However, an ergonomic bionic leg can be challenged to be developed. One of its challenges is related to functionality, where the bionic leg motor can be rugged to adapt to the user. One of the solutions for the bionic leg challenge is the application of a motor driver controlled by the user’s muscle signal. EMG signal can be utilized as the user’s signal source. The EMG signal is then fed back into the motor device. EMG signals obtained during a natural walking environment can result in smooth and natural movement. This study classifies EMG signals into 8 classes: a controlled walking environment (treadmill walking with various speeds) and a natural walking environment (ground walking, upstairs and downstairs walking). This research aims to optimize the ANN method using transfer function variations. The best method will be used to train EMG-driven motors for future studies related to bionic legs. The best ANN parameter in this research using Levenberg-Marquardt backpropagation as a training algorithm with transfer function pairing of the exponential function: Hyperbolic tangent sigmoid transfer function and SoftMax transfer function with 98.8% accuracy and 0.036 MSE value. The best method from the experiment and ANN classification can be used as a training method for a bionic leg in future research.
Read full abstract