Adipose-derived stem cells (ASC) or autologous fat transplantation could be used to ameliorate breast cancer postoperative deformities. This study aims to explore the action of ASC and ASC-exosomes (ASC-exos) in breast cancer characterization and tumor microenvironment immunity, which provided a new method into the application of ASC-exos. ASC were extracted from human adipose tissue for the isolation and verification of ASC-exos. ASC-exos were co-cultured with CD4+T cells, CD14+ monocytes and MCF-7 cells, respectively. The tumor formation of nude mice was also constructed. Cell characterization was determined by CCK8, scratch assay, and Transwell. Hematoxylin–eosin (HE), immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to observe the histopathology and protein expression. CD4+T cell and CD14+ monocytes differentiation was detected by flow cytometry. Western blot, qRT-PCR and RNAseq were used to detect the action of ASC-exos on gene and protein expression. CD4+T cells could take up ASC-exos. ASC-exos inhibited Th1 and Th17 differentiation and promoted Treg differentiation of CD4+T cells. ASC-exos inhibited M1 differentiation and promoted M2 differentiation of CD14+ monocytes. ASC-exos promoted the migration, proliferation, and invasion, while inhibited apoptosis of MCF-7 cells. ASC-exos promoted the tumor formation of breast cancer. The effect of ASC-exos on tumor microenvironment immunity was in accordance with the above in vitro results. TOX, CD4 and LYZ1 genes were upregulated, while Mettl7b and Serpinb2 genes were downregulated in ASC-exos group. Human T-cell leukemia virus 1 infection pathway was significantly enriched in ASC-exos. Thus, ASC-exos promoted breast cancer characterization and tumor microenvironment immunosuppression by regulating macrophage and T cell differentiation.
Read full abstract