ObjectiveThe emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) presents significant health challenges. Here, we present the structural genome sequence of an NDM-5-producing K. pneumoniae (HZKP2) in China. MethodsAntimicrobial susceptibility tests were conducted via broth microdilution. Whole-genome sequencing (WGS) was performed for genomic analysis. Wzi and capsular polysaccharide (KL) were analysed using Kaptive. Resistance genes, virulence factors, and comparative genomics analyses were also conducted. Multilocus sequence typing (MLST), replicons type, and core genome multilocus sequence typing (cgMLST) analysis were further conducted using BacWGSTdb server. ResultsHZKP2 was resistant to cefepime, ceftazidime, ciprofloxacin, ciprofloxacin, meropenem, and ertapenem. It harbored fosA, blaSHV-187, oqxA, oqxB, sul1, dfrA1, tet(A), floR, aph(6)-Id, aph(3′')-Ib, sul2, blaCTX-M-55, and blaNDM-5. Based on the RAST results, 5563 genes that belonged to 398 subsystems were annotated. The complete genome sequence of HZKP2 was characterized as ST1, wzi 19, and KL19, with five contigs totaling 5,654,446 bp, including one chromosome and four plasmids. Further analysis found that blaNDM-5 was located in a 46,161 bp IncX3 plasmid (pHZKP2-3). The genetic structure of blaNDM-5 gene was ISKox3-IS26-bleMBL-blaNDM-5-IS5-ISAb125-IS3000. Further analysis revealed that insertion sequences mediated the dissemination of blaNDM-5 from other species of Enterobacterales. Phylogenetic analysis showed that the closest relative was from a human stool specimen in China, which differed by 53 cgMLST alleles. ConclusionOur study provides the first structural perspective of the ST1 K. pneumoniae isolate producing NDM-5 in China. These results could provide valuable insights into the genetic characteristics, antimicrobial resistance mechanisms, and transmission dynamics of CRKP in clinical settings.