Human sperm cryopreservation is a routine procedure in assisted reproductive technology, but it has detrimental effects on different sperm parameters due to oxidative stress. Our objective was to assess the impacts of hydroxytyrosol (HT), as an antioxidant, on human sperm parameters following cryopreservation. In the first phase, 20 normal human semen samples were cryopreserved using the rapid freezing method with different concentrations of HT including 0, 50, 100, 150, and 200 μg/mL. In the second phase, 20 normal semen samples were collected and cryopreserved with 50 and 100 μg/mL HT. The beneficial effects of HT were determined by evaluation of motility (computer-assisted sperm analysis; CASA), viability (Eosin-nigrosine stain), DNA integrity (sperm chromatic dispersion test, SCD), reactive oxygen species (DCF and DHE staining by flowcytometry) lipid peroxidation (malondialdehyde, MDA test) and mitochondrial membrane potential (JC1 staining by flowcytometry) of sperm after cryopreservation. After thawing, sperm motility had an increasing trend in 50 and 100 μg/mL HT groups in comparison with other groups, althought the difference was not significant. However, sperm viability was significantly increased at 50 and 100 μg/mL HT. Our data also showed that sperm DNA fragmentation was significantly decreased after thawing at 100 μg/mL in comparison with 0 and 50 μg/mL HT. However, the level of intracellular reactive oxygen species, lipid peroxidation and mitochondrial membrane potential were not significantly different between groups. Our results showed that HT may have protective effects on the viability and DNA integrity of human sperm during the freezing-thawing process.
Read full abstract