Tetracycline (TC) contamination has become hot research topic, but little attention has been paid to its ecotoxicological monitoring. The primary objective of this study is to investigate the impact of TC on human normal liver cells (HL-7702) and find indicators for monitoring their ecotoxicity. The cytotoxicity of TC, at concentrations ranging from 0 to 1000 μg L−1, was assessed on HL-7702 cells. The results showed that TC significantly inhibited the cell viability at a high concentration (1000 μg L−1). The TC at exposure levels ≥ 50–100 μg L−1 significantly increased the levels of extracellular catalase (CAT), malondialdehyde (MDA), alanine transaminase (ALT), and aspartate transaminase (AST), and a significantly positive correlation between the TC concentrations and the values of the above parameters was observed. Swelling of the mitochondrial cristae (MC) and rough endoplasmic reticulum (RER) and the loss of ribosomes in HL-7702 cells, were observed at high TC levels. There was a positive correlation between soil TC concentration and ALT activities. The above results suggest that TC is cytotoxic to HL-7702 cells and that extracellular ALT activities can be used as a sensitive bioindicator for monitoring soil TC contamination. We, therefore, propose that the HL-7702 cell line can be a novel tool for early antibiotics toxicity monitoring.
Read full abstract