BackgroundIt is widely accepted that NKG2D+cells are critically involved in alopecia areata (AA) pathogenesis. However, besides being expressed in CD8+T-cells and NK cells, NKG2D is also found in human γδT-cells. AA lesional hair follicles (HFs) overexpress NKG2D and γδTCR activating ligands, e.g. MICA and CD1d, and chemoattractants for γδT-cells, such as CXCL10. ObjectiveTo investigate whether abnormal activities of γδT-cells may be involved in AA pathogenesis. MethodsWe analyzed the number and activation status of γδT-cells in human healthy, lesional and non-lesional AA scalp biopsies by FACS and/or quantitative (immuno-)histomorphometry. ResultsIn healthy human scalp skin, the few skin-resident γδT-cells were found to be mostly Vδ1+, non-activated (CD69−NKG2Ddim) and positive for CXCL10, and CXCL12 receptors. These Vδ1+T-cells predominantly localized in/around the HF infundibulum. In striking contrast, the number of Vδ1+T-cells was significantly higher around and even inside the proximal (suprabulbar and bulbar) epithelium of lesional AA HFs. These cells also showed a pro-inflammatory phenotype, i.e. higher NKG2D, and IFN-γ and lower CD200R expression. Importantly, more pro-inflammatory Vδ1+T-cells were seen also around non-lesional AA HFs. Lesional AA HFs also showed significantly higher expression of CXCL12. ConclusionOur pilot study introduces skin-resident γδT-cells as a previously overlooked, but potentially important, mostly (auto-)antigen-independent, new innate immunity protagonist in AA pathobiology. The HF infiltration of these activated, IFN-γ-releasing cells already around non-lesional AA HFs suggest that Vδ1+T-cells are involved in the early stages of human AA pathobiology, and may thus deserve therapeutic targeting for optimal AA management.
Read full abstract