Rubella infection (RuV) during early pregnancy is a known cause of congenital rubella syndrome (CRS). However, the mechanisms by which the virus crosses the placenta and infects the fetus are not fully understood. It has been known that various kinds of cell stresses can occur during the placenta formation. Previously, we demonstrated that low-glucose-induced endoplasmic reticulum stress could drastically enhance RuV infection in immortalized human first-trimester trophoblast cells. In this study, we investigated the roles of oxidative stress in RuV infection in these cells. Oxidative stress was induced in Swan.71 cells by culturing them in medium containing hydrogen peroxide (H2O2) in various concentrations and durations (50 µM or 100 µM for 24 h, or 150 µM for 1 h). RuV infection with a clinical strain was performed 24 h post-treatment, and capsid proteins were visualized at 24 and 48 h post-infection (hpi) using flow cytometry (FCM) and fluorescence microscopy (IF), respectively. The findings demonstrated that oxidative stress significantly enhanced RuV infection, as evidenced by FCM analysis, showing a twofold increase in infection rate, and confirmed by IF assay. Additionally, significantly increased intracellular viral replication was observed at 3 dpi. These findings suggest that oxidative stress during early pregnancy may promote the maternal-to-fetal transmission of rubella, contributing to the development of CRS.
Read full abstract