Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups resulted in the development of numerous metal-based compounds featuring different biologically active organic ligands in order to modulate their bioactivity. Along with the main representatives as potential therapeutic agents, such as the complexes Pt(II)/Pt(IV), Pd(II), Ru(II)/Ru(III), Ag(I), Au(I)/Au(III), Ti(IV), V(IV) and Ga(III), many other transition metal and lanthanide complexes possessing antiproliferative activity are widely discussed in the literature. However, such drugs remain outside the scope of this review. The main purpose of the current study is to review the potential activity of main group metal- and metalloid-based complexes against the most common cancer cell types, such as carcinomas (lung, liver, breast, kidney, gastric, colorectal, bladder, ovarian, cervical, prostate, etc.); sarcomas; blastomas; lymphomas; multiple myeloma; and melanoma. Overcoming the long disregard of organometallic compounds of metals and metalloids from the main groups, a growing number of emerging anticancer agents remarkably prove this field offers an extensive variety of new options for the design of innovative unexplored chemopharmaceutics. Moreover, some of the metal complexes and organometallic compounds from these elements can exhibit entirely different, specific modes of action and biological targets. Obviously, exploitation of their distinct properties deserves more attention.
Read full abstract