Brainstem nuclei play a critical role in both ascending monoaminergic modulation of cortical function and arousal, and in descending bulbospinal pain modulation. Even though sex-related differences in the function of both systems have been reported in animal models, a complete understanding of sex differences, as well as menopausal effects, in brainstem connectivity in humans is lacking. This study evaluated resting-state connectivity of the dorsal raphe nucleus (DRN), right and left locus coeruleus complex (LCC), and periaqueductal gray (PAG) according to sex and menopausal status in healthy individuals. In addition, relationships between systemic estrogen levels and brainstem-network connectivity were examined in a subset of participants. Resting-state fMRI was performed in 50 healthy men (age, 31.2 ± 8.0 years), 53 healthy premenopausal women (age, 24.7 ± 7.3 years; 22 in the follicular phase, 31 in the luteal phase), and 20 postmenopausal women (age, 54.6 ± 7.2 years). Permutation Analysis of Linear Models (5000 permutations) was used to evaluate differences in brainstem-network connectivity according to sex and menopausal status, controlling for age. In 10 men and 17 women (9 premenopausal; 8 postmenopausal), estrogen and estrogen metabolite levels in plasma and stool were determined by liquid chromatography-mass spectrometry/mass spectrometry. Relationships between estrogen levels and brainstem-network connectivity were evaluated by partial least squares analysis. Left LCC-executive control network (ECN) connectivity showed an overall sex difference (p = 0.02), with higher connectivity in women than in men; however, this was mainly due to differences between men and pre-menopausal women (p = 0.008). Additional sex differences were dependent on menopausal status: PAG-default mode network (DMN) connectivity was higher in postmenopausal women than in men (p = 0.04), and PAG-sensorimotor network (SMN) connectivity was higher in premenopausal women than in men (p = 0.03) and postmenopausal women (p = 0.007). Notably, higher free 2-hydroxyestrone levels in stool were associated with higher PAG-SMN and PAG-DMN connectivity in premenopausal women (p < 0.01). Healthy women show higher brainstem-network connectivity involved in cognitive control, sensorimotor function, and self-relevant processes than men, dependent on their menopausal status. Further, 2-hydroxyestrone, implicated in pain, may modulate PAG connectivity in premenopausal women. These findings may relate to differential vulnerabilities to chronic stress-sensitive disorders at different life stages.
Read full abstract