An important subgroup within the porphyrazine (Pz) family constitutes seco-porphyrazines, in the chemical structure of which one pyrrole unit is opened in the oxidative process. So far, there are only limited data on N-seco- and C-seco-Pzs. Here, the synthesis of a novel member of the Pzs seco-family, represented by an S-seco-tribenzoporphyrazine analogue, 22,23-bis(4-(3,5-dibutoxycarbonylphenoxy)butylsulfanyl)tribenzo[b,g,l]-22,23-dioxo-22,23-seco-porphyrazinato magnesium(II), is reported, with moderate 34% yield. The new derivative was characterized using NMR spectroscopy, UV-Vis spectroscopy, and mass spectrometry. In the photochemical study performed following the indirect chemical method with 1,3-diphenylisobenzofuran, S-seco-Pz revealed a high singlet oxygen quantum yield of 0.27 in DMF. Potential photocytotoxicity of S-seco-Pz was assessed in vitro on three cancer cell lines - two oral squamous cell carcinoma cell lines derived from the tongue (CAL 27, HSC-3) and human cervical epithelial adenocarcinoma cells (HeLa). In the biological study, the macrocycle was tested in its free form and after loading into liposomes. It is worth noting that S-seco-Pz was found to be non-toxic in the dark, with cell viability levels over 80%. The photocytotoxic IC50 values for free S-seco-Pz were 0.61, 0.18, and 4.1µM for CAL 27, HSC-3 and HeLa cells, respectively. Four different liposomal compositions were analyzed, and the cationic liposomes revealed the highest photokilling efficacy, with the IC50 values for CAL 27, HSC-3, and HeLa cells at 0.24, 0.25, and 0.31µM, respectively. The results of the photocytotoxicity study indicate that the new S-seco-tribenzoporphyrazine can be considered as a potential photosensitizer in photodynamic therapy of cancer, along with the developed cationic liposomal nanocarrier.
Read full abstract