Maintaining standing balance is essential for people to engage in productive activities in daily life. However, the process of interaction between the cortex and the muscles during balance regulation is understudied. Four balance paradigms of different difficulty were designed by closing eyes and laying sponge pad under feet. Ten healthy subjects were recruited to stand for ten 15 s trials in each paradigm. This study used simultaneously acquired electroencephalography (EEG) and electromyography (EMG) to investigate changes in the human cortico-muscular coupling relationship and functional brain network characteristics during balance control. The coherence and causality of EEG and EMG signals were calculated by magnitude-squared coherence (MSC) and transfer entropy (TE). It was found that changes in balance strategies may lead to a shift in cortico-muscular coherence (CMC) from the beta band to the gamma band when the difficulty of balance increased. As subjects performed the four standing balance paradigms, the causality of the beta band and the gamma band was stronger in the descending neural pathway than that in the ascending neural pathway. A multi-rhythmic functional brain network with 19 EEG channels was constructed and analyzed based on graph theory, showing that its topology also changed with changes in balance difficulty. These results show an active adjustment of the sensorimotor system under different balance paradigms and provide new insights into the endogenous physiological mechanisms underlying the control of standing balance.
Read full abstract