Unplanned disaster events can greatly disrupt access to essential resources, with calamitous outcomes for already vulnerable households. This is particularly challenging when concurrent extreme events affect both the ability of households to travel and the functioning of traditional transportation networks that supply resources. This paper examines the use of volunteer-based crowdsourced food delivery as a community resilience tactic to improve food accessibility during overlapping disruptions with lasting effects, such as the COVID-19 pandemic and climate disasters. The study uses large-scale spatio-temporal data (n = 28,512) on crowdsourced food deliveries in Houston, TX, spanning from 2020 through 2022, merged with data on community demographics and significant disruptive events occurring in the two-year timespan. Three research lenses are applied to understand the effectiveness of crowdsourced food delivery programs for food access recovery: 1) geographic analysis illustrates hot spots of demand and impacts of disasters on requests for food assistance within the study area; 2) linear spatio-temporal modeling identifies a distinction between shelter-in-place emergencies and evacuation emergencies regarding demand for food assistance; 3) structural equation modeling identifies socially vulnerable identity clusters that impact requests for food assistance. The findings from the study suggest that volunteer-based crowdsourced food delivery adds to the resilience of food insecure communities, supporting its effectiveness in serving its intended populations. The paper contributes to the literature by illustrating how resilience is a function of time and space, and that similarly, there is value in a dynamic representation of community vulnerability. The results point to a new approach to resource recovery following disaster events by shifting the burden of transportation from resource-seekers and traditional transportation systems to home delivery by a crowdsourced volunteer network.