Chip seal pavements, consisting of one or more layers of asphalt binder and fine aggregate, can be mechanically characterized as a surface treatment that enhances evenness and trafficability. This paper examines the geotechnical aspects of chip seal applicability compared to traditional hot mix asphalt pavements. An analytical model was employed to design unpaved roads and determine the required thickness of unbound layers. Eight optimization models were developed for hot mix asphalt pavements and four for chip seal pavements, aimed at achieving optimal designs for various input parameters. These outcomes were used to conduct a multi-parametric analysis, incorporating an optimization loop for each combination of design variables. The results indicate that, under low traffic conditions, a chip seal pavement structure can be up to 40% less expensive than an optimal hot mix asphalt pavement structure, particularly when the subgrade has low bearing capacity and is exposed to unfavorable climatic conditions. However, at medium traffic loads, with good subgrade bearing capacity and favorable climate, the chip seal pavement structure incurs costs that are 25% higher than those of the hot asphalt pavement structure. In addition, chip seal pavements should always be designed with integrated geosynthetic reinforcement to minimize construction costs, and chip seal is not as sensitive to frost as hot mix asphalt.
Read full abstract