Abstract

AbstractRutting is a major distress mode in flexible pavements, results from the repetitive loading caused by traffic movement. Pavement deformation consists of both recoverable (elastic) and unrecoverable (plastic) components. The continuous movement of vehicles contributes to the overall deformation in the flexible pavement system, involving all pavement components. In regions with hot climates or in the hot summer season, rutting tends to be more prominent due to the substantial reduction in the viscosity of the asphalt binder. This decrease in viscosity, which is inversely linked to rutting, occurs as temperatures rise, leading to a heightened susceptibility of the Hot Mix Asphalt (HMA) blend to rut formation. However, according to studies, a significant amount of permanent deformation takes place in the unbound layers beneath the asphalt course, it is therefore essential to prioritize attention on these layers. Temperature exerts besides viscosity a substantial impact on asphalt stiffness, leading to the transfer of higher vertical deviatoric stresses to the unbound layers beneath the asphalt course (base, subbase, subgrade). This research presents a study integrating the High Cycle Accumulation (HCA) model into a laminar model to determine permanent deformations in the unbound granular layer of flexible pavements and taking into account the temperature dependent stiffness of asphalt. Rutting depths at the end of the design lifetime were computed, accounting for seasonal stiffness variations. It was shown that the softer asphalt behavior significantly increases the development of ruts in the underlaying soil layers. The findings were compared with results obtained from mean annual temperature and the typical equivalent asphalt stiffness utilized in fatigue tests. Additionally, an analysis was conducted to assess whether the timing of road implementation influences settlements throughout the design lifetime. The results suggest that the sequence of seasons is most relevant during the first year of service, showing a distinct effect at that time. However, with a higher number of axle passes, the initial differences fade away, and the curves start to merge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.