We used the flux calibrated images through the Broad Band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of bright points in and around the sunspots. The well isolated bright points were selected and classified as umbral dot, peripheral umbral dot, penumbral grains and G-band bright point depending on their location. Most of the bright points are smaller than about 150 km. The larger points are mostly associated with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying parts of umbra. The color temperature of the bright points, derived using the continuum irradiance, are in the range of 4600 K to 6600 K with cooler ones located in the umbra. The temperature increases as a function of distance from the center to outside. The G-band, CN-band and CaII H flux of the bright points as a function of their blue band brightness increase continuously in a nonlinear fashion unlike their red and green counterpart. This is consistent with a model in which the localized heating of the flux tube deplete the molecular concentration resulting the reduced opacity which leads to the exposition of deeper and hotter layers. The scatter in CaII H irradiance is higher compared to the G-band and CN-band irradiance. The light curve of the bright points show that the enhanced brightness at these locations last for about 15 to 60 minutes with the least contrast for the points out side the spot. The umbral dots near the penumbral boundary are associated with elongated filamentary structures.
Read full abstract