Fluid inclusion microthermometry and Raman spectroscopy of fluid inclusions in quartz veins from the Pennsylvanian rocks of the Anthracite belt, eastern Pennsylvania support a deep burial model of coalification in favor of focused orogenic hot fluid flow. High-temperature (250 to 255 °C) trapping of CH4 ± CO2 saturated aqueous fluids and CH4 ± CO2 inclusions indicate fluid trapping at depths of 11.5 to 13.4 km under a cover of Pennsylvanian to Permian(?) syntectonic load. In the folded rocks to the south of the Anthracite belt, CH4 ± CO2 fluid inclusions indicate a sediment load that was up to 16.3 km thick. Re-equilibrated aqueous fluid inclusions from veins in Silurian through Devonian rocks give the same range of trapping conditions but a wide range of fluid salinities suggesting that folding, fracturing, and meteoric recharge resulted in the intermixing of fluids from throughout the stratigraphic succession.
Read full abstract