AbstractWe present our results on spatio-temporal evolution of laser plasma produced shockwaves (SWs) and hot core plasma (HCP) created by focused second harmonic (532 nm, 7 ns) of Nd-YAG laser in quiescent atmospheric air at f/#10 focusing geometry. Time resolved shadowgraphs imaged with the help of an ICCD camera with 1.5 ns temporal resolution revealed the presence of two co-existing sources simultaneously generating SWs. Each of the two sources independently led to a spherical SW following Sedov-Taylor theory along the laser propagation direction with a maximum velocity of 7.4 km/s and pressure of 57 MPa. While the interaction of SWs from the two sources led to a planar SW in the direction normal to the laser propagation direction. The SW detaches from the HCP and starts expanding into the ambient air at around 3 µs indicating the onset of asymmetric expansion of the HCP along the z-axis. The asymmetric expansion is observed till 10 µs beyond which the SW leaves the field of view followed by a deformation of the irradiated region in the XY-plane due to the penetration of surrounding colder air in to the HCP. The deformation in the XY-plane lasts till 600 µs. The dynamics of rapidly expanding HCP is observed to be analogous to that of cavitation bubble dynamics in fluids.