Building skins have a vital role in energy efficiency, particularly in terms of the conservation or consumption of energy. Many factors must be considered by designers to prevent wasting significant quantities of energy, to preserve and provide internal air conditioning and lighting, particularly in hot dry locations where the integration of sun protection systems is highly recommended. This pilot study looks at the challenge of developing energy-efficient building skins in hot regions like Biskra city by applying a natural daylight strategy represented by a parameterised moveable shading component to the skin of a hospital patient’s room. In this research, we aim to assess the adoption of building skin parameterisation as a beneficial technique for reducing energy consumption and improving internal temperature and lighting in this environment by developing and implementing a computational design methodology. Promising experimental results demonstrate the benefit of this proposal. The use of parameterisation in the design of patient’s room skins, with moveable, tightly folded morphology, providing self-shading, are essential and effective techniques for ensuring good natural lighting and reducing both temperature and energy consumption..