Relevance. The need to estimate the time of formation sand accumulation near the annulus of a horizontal well and the unit length of filter elements in the bottom of production strings and to determine the stresses on the surface of production strings equipped with sand filters when lowering into the well. Aim. Based on a study of the reasons for the continued flow of sand into wells equipped with anti-sand filters, to develop and propose measures related to the need to choose a reduction in the number of filters that provide the design flow rate of a horizontal well or a significant increase in the length of the filtering surface of the filters in order to reduce erosive wear of the wire winding. Objects. We are considering a well with a horizontal section, equipped with sand filters, the same size as the casing strings. It was assumed that the integrity of the surface of the filter elements would be preserved and the conditions for their destruction would be eliminated when lowering into the horizontal shaft. This presupposes the necessary efficient operation of the well throughout the entire operational period. The section of the first set of curvature and the forces arising during this are considered as wellas stability of a pipe string during possible stops. Centralizers are evenly located along the length of the column, then in some sections we will have a multi-span statically indeterminate beam, in each section of which a radial load acts. Methods. When studying the time of formation sand accumulation in the annular space of a horizontal well and a unit length of filter elements in the bottom of production strings, it is necessary at the first stage to determine the stresses on the surface of production strings equipped with sand filters when lowering into the well. Studying the assessment of the existence time of the transition period is of particular interest. This is, in other words, during what operational period there is a complete accumulation of formation sand in the annular space and the transition of formation drainage along the entire length of the horizontal wellbore to drainage of only zones adjacent to the filters. To calculate the fluid flow rate when the annular space of the horizontal well is completely filled with sand, the design values of the AC4.8 formation parameters were used. The maximum value of depressions used in the calculations is assumed to be 1.5 MPa. Results. Consideration of situations that arise when filters are lowered into horizontal wells indicates that the outer surface of the filter elements is not protected from destruction as a result of contact stresses with the walls of the drilled wellbore. To protect against destruction and rubbing open gaps by clay-containing rocks, rigid centralizers should be installed along the edges of the filter elements, the maximum allowable distances between which should not exceed 4.0–4.5 m.
Read full abstract