Elastic metamaterials are typically periodic materials possessing unit cells endowed with engineered architecture much smaller than the typical phenomenological length scale. The development of continuum models capable of accurately representing the effects of this aforementioned architecture is extremely challenging, and hence a sparsely developed area. This paper develops a novel 2-D continuum model capable of capturing the dynamic behaviour of a class of anisotropic elastic metamaterials with local rotational elements in the long wavelength limit. A constitutive relation incorporating these local rotational effects is proposed, and ratified using a representative discrete model using linear Hookean springs and identical rigid disks. The new continuum model is used to generate a dispersion relation for harmonic plane waves propagating in an arbitrary direction, which is subsequently compared to the dispersion behaviour of the original discrete model. The general behaviour of this continuum when subjected to 2-D planar harmonic wave propagation in the anisotropic medium is then analysed, with specific attention given to the effect of material anisotropy and wave propagation direction. This work is the first of its kind to create a new continuum model of a class of anisotropic elastic metamaterials with local rotational effects.
Read full abstract