Abstract

We extend the single-chain slip-spring model developed by Likhtman [Macromolecules 38, 6128 (2005)] to describe the dynamics and rheology of entangled polymers to wormlike micellar solutions by incorporating chain breakage and rejoining, which are the key additional dynamics present in wormlike micellar solutions. We show that the linear rheological properties obtained from this micelle slip-spring model are in good agreement with mesoscopic simulations using the “pointer algorithm” [W. Zou and R. G. Larson, J. Rheol. 58, 681 (2014)] and can be fit to experimental results after an adjustment to correct for the too-high flexibility of the micelles assumed in the slip-spring model. Finally, we use this model to predict the nonlinear rheological properties of entangled wormlike micelles, which are the first predictions that include the effects of entanglements, breakage and rejoining, Rouse modes, and stretch of bead-spring micellar chains with Hookean springs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.