Abstract

In this two part series (Zunker and Kamrin, 2024), we present a contact model able to capture the response of interacting adhesive elastic-perfectly plastic particles under a variety of loadings. In Part I, we focus on elastic through fully-plastic contact with and without adhesion. For these contact regimes the model is built upon the method of dimensionality reduction which allows the problem of a 3D axisymmetric contact to be mapped to a corresponding problem of a 1D rigid indenter penetrating a bed of independent Hookean springs. Plasticity is accounted for by continuously varying the 1D indenter profile subject to a constraint on the contact pressure. Unloading falls out naturally, and simply requires lifting the 1D indenter out of the springs and tracking the force. By accounting for the incompressible nature of this plastic deformation, the contact model is able to capture multi-neighbor dependent effects such as increased force and formation of new contacts. JKR type adhesion is recovered seamlessly within the method of dimensionality reduction by simply allowing the springs to ‘stick’ to the 1D indenter’s surface. Because of the mechanics-focused formulation of the contact model, only a few physical inputs describing the interacting particles are needed: particle radius, Young’s modulus, Poisson ratio, yield stress, and effective surface energy. The contact model is validated against finite element simulations and analytic theory—including Hertz’s contact law and the JKR theory of adhesion. These comparisons show that the proposed contact model is able to accurately capture plastic displacement, average contact pressure, contact area, and force as a function of displacement for contacts as well as particle volume within the elastic to fully-plastic regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call