As crops have different agricultural requirements in pot seedling and the parameters of the planting mechanism need to be repeatedly designed, this paper proposed a reverse design method for the classic gear five-bar planting mechanism based on the agronomic requirements for pot seedling planting. The mathematical model of the planting trajectory of the geared fivebar planting mechanism was constructed through homogeneous coordinate transformation method,; the conditions for the geared five-bar planting mechanism to achieve zero-speed planting were: the gear ratio of the gear pair is -2, and the difference in length between the planetary gear rod and the sun gear rod is equal to the ratio of the planting distance to 2π. Based on the agronomic parameters of pot seedlings (planting depth, planting distance), the parameters of the geared five-bar mechanism were reversed to realize the reverse design of the geared five-bar planting mechanism. Field test results: the average planting depth of tomato pot seedlings is 47mm, the planting distance is 203mm, and the uprightness of pot seedlings is 97.5%, which meets the agronomic requirements of planting tomato pot seedlings. Therefore, the proposed reverse design method of geared five-bar planting mechanism based on agronomic requirements can solve the problem of repeated design of planting mechanism due to different agricultural parameters of most crops, which can greatly reduce the workload of designing various crop planting mechanisms
Read full abstract